Tugas 4 Rangkuman Materi Aljabar Boolean

 Commutative law of addition

Commutative law of addition, 
A+B = B+A 
the order of ORing does not matter.

Commutative law of Multiplication

Commutative law of Multiplication 
AB = BA 
the order of ANDing does not matter. 

Associative law of addition

Associative law of addition 
A + (B + C) = (A + B) + C 
The grouping of ORed variables does not matter

Associative law of multiplication

Associative law of multiplication 
A(BC) = (AB)C 
The grouping of ANDed variables does not matter

Boolean Rules

1) A + 0 = A
  • In math if you add 0 you have changed nothing 
  • In Boolean Algebra ORing with 0 changes nothing
2)A + 1 = 1
  • ORing with 1 must give a 1 since if any input is 1 an OR gate will give a 1 
3)A • 0 = 0
  • In math if 0 is multiplied with anything you get 0. If you AND anything with 0 you get 0
4)A • 1 = A
  • ANDing anything with 1 will yield the anything
5)A + A = A
  • ORing with itself will give the same result
6)A + A = 1
  • Either A or A must be 1 so A + A =1
7)A • A = A
  • ANDing with itself will give the same result
8)A • A = 0
  • In digital Logic 1 =0 and 0 =1, so AA=0 since one of the inputs must be 0.
9)A = A
  • If you not something twice you are back to the beginning 
10)A + AB = A
Proof:
AB = A(1 +B) DISTRIBUTIVE LAW  
A + AB = A(1 +B) DISTRIBUTIVE LAW 
             = A·1         RULE 2: (1+B)=1                                           
             =A             RULE 4: A·1 = A
11)A + AB = A + B
  • If A is 1 the output is 1 , If A is 0 the output is B
Proof:
A + AB = (A + AB) + AB          RULE 10
             = (AA +AB) + AB        RULE 7
             =AA + AB + AA +AB  RULE 8
             =(A + A)(A + B)           FACTORING
             =1·(A + B)                    RULE 6
             =A + B                          RULE 4
12)(A + B)(A + C) = A + BC
Proof:
(A + B)(A +C) = AA + AC +AB +BC             DISTRIBUTIVE LAW
                         =A + AC + AB + BC               RULE 7
                         =A(1 + C) +AB + BC             FACTORING
                         =A.1 + AB + BC                     RULE 2
                         =A(1 + B) + BC                      FACTORING
                         =A.1 + BC                               RULE 2
                         =A + BC                                  RULE 4

Komentar

Postingan Populer